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Super Keys: 
- A super key is a set of one or more attributes, which can uniquely identify a row in a 

table. 
- A super key may have additional attributes that are not needed for unique identification. 
- E.g. 1. Suppose that we have a relation called Students with the attributes id, first_name, 

last_name and average and {id} is a super key. 
Since {id} is a super key, then the following are also super keys: 

- {id, first_name} 
- {id, last_name} 
- {id, average} 
- {id, first_name, last_name} 
- {id, first_name, average} 
- {id, last_name, average} 
- {id, first_name, last_name, average} 

This is because since id can uniquely identify a row in Students, anything else we add to 
the set can also uniquely identify a row in Students. 

- Another way to define super keys is through closure. The closure of a super key should 
give back the entire relation. 

- E.g. 2. Given R(A, B, C) and A → BC. Determine if A is a super key. 
 
Soln: 
The closure of A, A+ = {A, B, C}. 
Since the closure of A gives back the entire relation R, it is a super key. 

- E.g. 3. Given R(A, B, C, D) and 
ABC → D 
AB → CD 
A → BCD 
 
What are the super key(s) if any exist? 
 
Soln: 
Since we don’t have A on the RHS of any fd, we know that our super key must contain at 
least A. 
Furthermore, we see that A+ = {A, B, C, D}. Hence, A is a super key. This means that the 
following are all super keys: 
{A, B} 
{A, C} 
{A, D} 
{A, B, C} 
{A, B, D} 
{A, C, D} 
{A, B, C, D} 

Candidate Keys: 
- A candidate key is a minimal super key. 

I.e. It is the minimal set of attributes needed to uniquely identify a row in a table. 
In example 1, only {id} is a candidate key. 
In example 3, only {A} is a candidate key. 

- Properties of candidate keys: 
- It must contain unique values. 
- It may have multiple attributes. 
- It must not contain null values. 
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- It should contain the minimum fields to ensure uniqueness. 
- It should uniquely identify each record in a table. 

- A table can have multiple candidate keys. 
- All candidate keys are super keys but not all super keys are candidate keys. 
- E.g. 4. Given R(A, B, C, D) and 

B → ACD 
ACD → B 
 
List out all the candidate keys, if there are any. 
 
Soln: 
B+ = {A, B, C, D}  
(ACD)+ = {A, B, C, D}. 
Hence, both {B} and {A, C, D} are both super keys. 
However, because they are both minimal, they are also candidate keys. 
Note that for ACD, you cannot break it down and still get all the attributes in R. 
A+, C+, D+, (AC)+, (AD)+, (CD)+ do not give you all the relations in R. 
Hence, ACD is minimal. 
So in this case, we have 2 candidate keys for the relation R. 

- E.g. 5. Given R(A, B, C, D) and 
AB → C 
C → BD 
D → A 
 
List all the candidate keys, if there are any. 
 
Soln: 
(AB)+ = {A, B, C, D} 
C+ = {A, B, C, D} 
D+ = {A, D} 
 
In this example, both {A, B} and {C} are candidate keys. 

- E.g. 6. Given R(A, B, C, D) and 
A → B 
B → C 
C → A 
 
List all the candidate keys, if there are any. 
 
Soln: 
First, notice that neither A, B nor C can get you column D. Hence, we know that our 
candidate key must contain D. 
 
A+ = {A, B, C} 
B+ = {A, B, C} 
C+ = {A, B, C} 
 
Hence, the candidate keys are {A, D}, {B, D}, and {C, D}. 
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- E.g. 7. Given R(A, B, C, D) and 
AB → CD 
D → A 
List all the candidate keys, if there are any. 

 
Soln: 
(AB)+ = {A, B, C, D} 
D+ = {A, D} ← Notice that the closure of D has all the relations except for B and C. We 
know that AB gets us B and C and we already have A. 
(BD)+ = {A, B, C, D} 
 
Hence, {A, B} and {B, D} are candidate keys. 

- E.g. 8. Given R(A, B, C, D, E, F) and 
AB → C 
C → D 
B → AE 
 
List all the candidate keys, if there are any. 
 
Soln: 
(AB)+ = {A, B, C, D, E} 
B+ = {A, B, C, D, E} ← Only missing column F. 
C+ = {C, D} 
 
Hence, {B, F} is the only candidate key. 

- E.g. 9. Given R(A, B, C, D) and 
AB → CD 
C → A 
D → B 
 
List all the candidate keys, if there are any. 
 
Soln: 
(AB)+ = {A, B, C, D} 
C+ ={A, C} ← Missing B and D. We know that AB gets us CD, so {B, C} is a candidate 
key as we already have A. 
D+ = {B, D} ← Missing A and C. We know that AB gets us CD, so {A, D} is a candidate 
key as we already have B. 
 
Hence, {A, B}, {B, C}, {C, D} and {A, D} are the candidate keys. 

Primary Keys: 
- A primary key is a chosen candidate key. 

I.e. There could be multiple candidate keys. From the options, we choose one to use. 
The one that we chose to use is the primary key. 

- Rules for defining primary keys: 
- Two rows can't have the same primary key value. 
- The primary key field cannot be null. 
- The value in a primary key column can never be modified or updated if any 

foreign key refers to that primary key. 
- Prime attributes are the attributes of the candidate key(s). 
- Non-prime attributes are the attributes of a table not in the candidate key(s). 
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Normalization: 
- Normalization is a database design technique that reduces data redundancy and 

eliminates undesirable characteristics like insertion, update and deletion anomalies. 
- Normalization divides larger tables into smaller tables and links them using relationships.  
- The purpose of normalization is to eliminate repetitive data and ensure data is stored 

logically. 
- E.g. 10. Consider the table below: 

Student 

 
Here are some problems with this design: 

1. Suppose we enroll a new student who’s not in any program. Then, the program, 
department head and department head’s phone number will be blank. This is an 
example of insertion anomaly.  

2. Suppose that a department head gets changed. Then, we would have to change 
that information for multiple students, and if by mistake we miss any record, it will 
lead to data inconsistency. This is an example of updation anomaly. 

3. We see that the department head and department head’s phone number 
information are repeated for the students who are in that program. This is an 
example of data redundancy. 

4. Suppose that student D graduated and all rows pertaining to student D gets 
deleted. If student D is the only student in the stats program, then we lose 
important information, such as student D’s program, the program’s department 
chair and the department chair’s phone number, when we delete all rows 
pertaining to student D. This is an example of deletion anomaly. 

- Anomalies are caused when there is too much redundancy in the database's 
information. 

- Update anomaly happens when there are multiple entries of the same data in the db 
and when we update that data, one or more entries do not get updated. Then, we will 
have data inconsistency. 

- Insertion anomaly happens when inserting vital data into the database is not possible 
because other data is not already there. 

- Deletion anomaly happens when the deletion of unwanted information causes desired 
information to be deleted as well. 

- There are a few normalization rules we can use: 
- 1NF (First Normal Form) 
- 2NF (Second Normal Form) 
- 3NF (Third Normal Form) 
- BCNF (Boyce and Codd Normal Form) 
- 4NF (Fourth Normal Form) 

SID Name Program Department Head Department Head’s Phone Number 

1 A CSC X 100-100-1000 

1 A MAT Y 100-100-1001 

2 B CSC X 100-100-1000 

3 C MAT Y 100-100-1001 

4 D STA Z 100-100-1002 
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- 1NF (First Normal Form): 
- For a table to be in the First Normal Form, it must follow the following rules: 

1. Each table cell should contain a single value. 
2. Each record needs to be unique. 
3. Values stored in a column should be of the same domain 
4. All the columns in a table should have unique names. 

- 2NF (Second Normal Form): 
- For a table to be in the Second Normal Form, it must follow the following rules: 

1. It is already in First Normal Form. 
2. It must not have partial dependency. Partial dependency occurs when a 

non-prime attribute in a table depends on only a part of the candidate key and not 
on the whole candidate key. 
I.e. A partial dependency occurs when we have P → NP where P is 1 or more 
prime attributes but is not a candidate/primary key and NP is 1 or more 
non-prime attributes. 
E.g. 11. Consider R(A, B, C, D) and  
AB → D 
B → C 
 
We see that the candidate key is {A, B}. However, R is not in 2NF because the 
attribute C only depends on B and not A & B. This is an example of partial 
dependency. 
 
To change R to 2NF, we have to decompose it so that the partial dependencies 
are its own tables. 
 
For this example, we decompose R(A, B, C, D) into 
R1(A, B, D) and  
R2(B, C) 
Note: When you decompose R into smaller relations, you always want a relation 
with the primary keys. In this case, we have R1, so we don’t need an additional 
table. 

- E.g. 12. Consider R(A, B, C) and  
AB → C 
B → C 
 
We see that the candidate key is {A, B}. We see that B → C is a partial dependency. 
 
To change R to 2NF, we have to decompose it so that the partial dependencies are its 
own tables. 
 
For this example, we decompose R(A, B, C) into 
R1(A, B) and  
R2(B, C) 
 
We don’t have C in R1 because we already have C in R2. 

- E.g. 13. Consider R(A, B, C, D, E) and  
AB → C 
D → E 
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We see that the candidate key is {A, B, D}. We see that AB → C and D → E are partial 
dependencies. 
 
To change R to 2NF, we have to decompose it so that the partial dependencies are its 
own tables. 
 
For this example, we decompose R(A, B, C, D, E) into 
R1(A, B, C) 
R2(D, E) 
R3(A, B, D) 

- E.g. 14. Consider R(A, B, C, D, E) and  
A → B 
B → E 
C → D 
 
We see that the candidate key is {A, C}. We see that A → B and C → D are partial 
dependencies. 
 
To change R to 2NF, we have to decompose it so that the partial dependencies are its 
own tables. 
 
For this example, we decompose R(A, B, C, D, E) into 
R1(A, B, E) 
R2(C, D) 
R3(A, C) 
 
Note: B → E is not a partial dependency as B is not part of the primary key. For 2NF, we 
simply find the relation that contains B, which is R1, and add E to it. 

- 3NF (Third Normal Form): 
- A table is in third normal form if: 

1. It is in 2nd normal form. 
2. It must not have transitive dependencies. 

Recall: A functional dependency is said to be transitive if it is indirectly formed by two 
functional dependencies.  
I.e. If A → B and B → C, then A → C is a transitive dependency. 
Another way to think about transitive dependency is that it occurs when a non-prime 
attribute depends on other non-prime attributes. So, a transitive dependency occurs 
when you have NP → NP. 

- The normalization of 2NF relations to 3NF relations involves the removal of transitive 
dependencies. If a transitive dependency exists, we remove the transitively dependent 
attribute(s) from the relation by placing the attribute(s) in a new relation along with a 
copy of the determinant. 
Recall: The left side of a functional dependency is called the determinant. 

- E.g. 15. Consider R(A, B, C) and  
A → B 
B → C 
 
We see that A+ = {A, B, C}, so {A} is the candidate key and A is a prime attribute. 
Furthermore, we see that we have a transitive dependency B → C. 
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What we do is we split R into 2 relations: 
R1(A, B) 
R2(B, C) 

- Let P be prime attribute(s) and NP be non-prime attribute(s) and suppose that {P} is not 
a candidate/primary key. Then, we have 

1. Partial dependency if we have P → NP. 
2. Transitive dependency if we have NP → NP. 

If we have P/NP → P, we know for sure that it is in 3NF. 
- E.g. 16. Consider R(A, B, C, D, E) and  

A → B 
B → E 
C → D 
 
We see that (AC)+ = {A, B, C, D, E}, so {A, C} is a candidate key. 
We see that we have 

1. A → B (Partial dependency) 
2. C → D (Partial dependency) 
3. B → E (Transitive dependency) 

 
To turn R into 3NF, we will break it down into the following relations: 
R1(A, B, E) ← Since B → E, we put E here. However, B → E is a transitive dependency, 
so we have to split up R1. We will split R1 up into R11 and R12. 
R11(A, B) 
R12(B, E) 
R2(C, D) 
 
R3(A, C) ← Note: When you decompose R into smaller relations, you always want a 

        relation with the primary keys. In this case, we need to create a new 
        relation to get a relation with the primary keys. 

 
The final decomposition of R is: 
R11(A, B) 
R12(B, E) 
R2(C, D) 
R3(A, C) 

- E.g. 17. Consider R(A, B, C, D, E, F, G, H, I, J) and  
AB → C 
A → DE 
B → F 
F → GH 
D → IJ 
 
A candidate key is {A, B} as the closure of (AB) gets back all attributes in R. 
We see that 

1. A → DE is a partial dependency (pd). 
2. B → F is a pd. 
3. F → GH is a transitive dependency (td). 
4. D → IJ is a td. 

 
We want to decompose R so that it is in 3NF. 
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We start with R1(A, D, E, I, J). We know that D → IJ, so we put I and J here. However,  
D → IJ is a td, so we have to split up R1 into R11 and R12. 
R11(A, D, E) 
R12(D, I, J) 
Next, we have R2(B, F, G, H). We know that F → GH, so we put G and H here. 
However, F → GH is a td, so we split up R2 into R21 and R22. 
R21(B, F) 
R22(F, G, H) 
 
R3(A, B, C) 
 
The final decomposition of R is: 
R11(A, D, E) 
R12(D, I, J) 
R21(B, F) 
R22(F, G, H) 
R3(A, B, C) 

- E.g. 18. Consider R(A, B, C, D, E) and  
AB → C 
B → D 
D → E 
 
A candidate key is {A, B} as the closure of (AB) gets back all attributes in R. 
We see that B → D is a pd and that D → E is a td. 
We need to decompose R. 
We start with R1(B, D, E). We know that D → E, so we put E here. However, D → E is a 
td, so we have to split R1 into R11 and R12. 
R11(B, D) 
R12(D, E) 
 
Next, we have R2(A, B, C). 
 
The final decomposition of R is: 
R11(B, D) 
R12(D, E) 
R2(A, B, C) 

- BCNF (Boyce and Codd Normal Form): 
- For a table to be in BCNF, following conditions must be satisfied: 

1. It must be in 3NF. 
2. For each functional dependency (X → Y), X must be a super key. 

- E.g. 19. Consider R(A, B, C) with the fds 
AB → C 
C → B 
 
We see that {A, B} and {A, C} are candidate keys.  
Hence, A, B and C are all prime attributes. 
AB → C is neither a pd nor td.  
C → B is neither pd or td because both the LHS and the RHS have prime attributes. 
Hence, we see R is in 3NF. 
However, R is not in BCNF because in C → B, C is not a super key. 
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To fix this, I’ll decompose R into  
R1(C, B) 
R2(A, C) ← We chose (A, C) over (A, B) to prevent loss of data when joining R1 and R2. 

- E.g. 20. Given R(A, B, C, D, E, F, G, H) and  
AB → C 
A → DE 
B → F 
F → GH 
 
What form is it? 
 
Soln: 
We see that a candidate key is {A, B}. 
We see that A → DE is a pd. Hence, R is in 1NF only. 

- E.g. 21. Given R(A, B, C, D, E) and  
CE → D 
D → B 
C → A 
 
What form is it? 
 
Soln: 
We see that a candidate key is {C, E}. 
We see that C → A is a pd. Hence, R is in 1NF only. 

- 4NF (Fourth Normal Form): 
- For a table to satisfy the Fourth Normal Form, it should satisfy the following two 

conditions: 
1. It should be in the Boyce-Codd Normal Form. 
2. For each non-trivial multi-valued dependency A -->> B, A is a key. 

- A multi-valued dependency occurs when two attributes in a table are independent of 
one another, but both depend on a third attribute. 

- Here is the formal definition for multi-valued dependency: 
Let R be a relation. Let A, B and rest be attributes. Let t, u, and v be tuples. 
∀t, u ∈ R if t[A] = u[A], then ∃v ∈ R s.t. v[A] = t[A] and v[B] = t[B] and v[rest] = u[rest]. 
 
We can show a picture of this. 
R 

In our definition, we said that “For all tuples t and u in relation R, if t[A] equals to u[A], 
then there exists a tuple v in R such that v[A] = t[A] and v[B] = t[B] and v[rest] = u[rest].” 
In the table above, we can see that t[A] = u[A] = a. Furthermore, we didn’t specify that 
t[B] = u[B] or t[rest] = u[rest], so we have different values for those. We can create tuple 

 A B Rest 

t a b1 r1 

u a b2 r2 

v a b1 r2 

w a b2 r1 
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v based on the definition and tuples t and u. By swapping the roles of t and u, we can 
create tuple w. 

- A table is said to have multi-valued dependency, if the following conditions are true: 
1. For a dependency A → B, if for a single value of A, multiple values of B exists, 

then the table may have multi-valued dependency. 
2. A table should have at-least 3 columns for it to have a multi-valued dependency. 
3. For a relation R(A,B,C), if there is a multi-valued dependency between, A and B, 

then B and C should be independent of each other. 
- Note: Every FD is an MVD. This is because if X → Y, then swapping Y's between tuples 

that agree on X does not create new tuples. 
I.e. X → Y implies X -->> Y 

- Note: If X -->> Y, then X -->> R - Y - X. 
- I.e. If we have a relation R(A, B, C, D) and we have A -->> B, then we also have  

A -->> CD. 
- The main idea of 4NF is to eliminate redundancy due to the multiplicative effect of 

MVDs. 
- E.g. 22. Consider the table below: 

 
We see that course and hobby are independent of each other, but are dependent on 
stu_id. Furthermore, we see that for stu_id value of 21, there’s 2 different corresponding 
course values and 2 different corresponding hobby values. Hence, the table has 
multi-valued dependency. 

- We use -->> to denote a multi-valued dependency. 
I.e. For the table above in example 22, stu_id -->> course and stu_id -->> hobby. 

- E.g. 23. Consider the relation Apply(SSN, collegeName, hobby) and the fact that 
SSN -->> collegeName (cName) and SSN -->> hobby. 
 
Based on the information above, we can create a table below: 

 
Notice how all possible combinations of cName and hobby are listed. 

- A trivial multivalued functional dependency occurs when X -->> Y and 

SSN cName Hobby 

123 Stanford Trumpet 

123 Berkeley Tennis 

123 Stanford Tennis 

123 Berkeley Trumpet 
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1. Y ⊆ X (Y is a subset of X) or 
2. X ⋃ Y gets back all the attributes of the relation. 

I.e. There’s no “rest.” 
- A non-trivial multi-valued functional dependency occurs otherwise. 
- Rules of multi-valued functional dependency: 

1. If we have A → B, then we also have A -->> B. 
Proof: 
Consider the template table below and the fact that A → B. 
 

 
We want to prove that there exists a tuple v with the following values: 

 
We know that v exists for the following reasons: 

a. Since A → B, and we have a1 | b1 and a1 | b2, we know that b1 = b2. 
b. Since b1 = b2, go back to v and rewrite b1 as b2. You’ll see that now, you 

have a1 | b2 | r2. This row exists and is tuple u. 
c. Hence, tuple v exists. 
d. Hence, if A → B, then A -->> B. 

2. Intersection Rule: If A -->> B and A -->> C, then A -->> B⋂C. 
3. Transitive Rule: If A -->> B and B -->> C, then A -->> B-C. 

- Functional dependencies are a subset of multi-valued dependencies. 
This means that any rules for multi-valued dependencies apply to functional 
dependencies but rules for functional dependencies may not apply to multi-valued 
dependencies.  

- Here’s the algorithm to decompose a relation into Fourth Normal Form: 
Input: Relation R + FDs for R + MVDs for R 
Output: Decomposition of R into 4NF relations with lossless joins. 
Steps: 

1. Compute the candidate keys for R. 
2. Repeat until all relations are in 4NF: 

a. Pick any R’ with nontrivial A -->> B that violates 4NF. 
b. Decompose R’ into R1(A, B) and R2(A, Rest) 
c. Compute FDs and MVDs for R1 and R2. 
d. Compute keys for R1 and R2. 

- E.g. 24. Consider the relation Apply(SSN, collegeName, hobby) and the fact that 
SSN -->> collegeName (cName). Decompose Apply such that all relations are in 4NF. 
 
Solution: 
A1(SSN, cName) 
A2(SSN, hobby) 
  

 A B Rest 

t a1 b1 r1 

u a1 b2 r2 

 A B C 

v a1 b1 r2 
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- E.g. 25. Consider the relation Apply(SSN, collegeName, date, major, hobby) and the fact 
that  
SSN, cName → date 
SSN, cName, date -->> major 
Decompose Apply such that all relations are in 4NF. 
 
Solution: 
A1(SSN, cName, date, major) 
A2(SSN, cName, date, hobby) 
 
We need to break up A1 and A2 further. I’ll break A1 into A11 and A12 and A2 into A21. 
 
A11(SSN, cName, date) 
A12(SSN, cName, major) 
A21(SSN, cName, hobby) 

 
Tutorial Notes: 
E.g. 1. Given R(A, B, C, D) and the FDs 
A → BC 
AC → D 
D → ABC 
C → A 
 
List out all the candidate keys. 
 
Soln: 
First, we try to look for any attribute(s) that are not on the RHS on any FD. If such attribute(s) 
exist, we know that all candidate keys must include those attribute(s) since the only way to 
derive those attribute(s) is from themselves. However, in this example, all attributes are listed on 
the RHS of some FD. 
 
We see that A+ = {A, B, C, D}, so {A} is a candidate key. 
We see that C+ = {A, B, C, D}, so {C} is a candidate key. 
We see that D+ = {A, B, C, D}, so {D} is a candidate key. 
 
Hence, the candidate keys are {A, C, D}. 
Lossy Decomposition: 

- The decomposition of relation R into R1 and R2 is lossy when the join of R1 and R2 
does not yield the same relation as in R. 

- Note: A lossy decomposition does not necessarily mean that you lost data. You could 
also have gained false/incorrect data when you join the tables. It simply means that 
when you join the tables, it does not yield the same relation as the original table. 

- One of the disadvantages of decomposition into two or more relations is that some 
information is lost during retrieval of original relation or table. 

- Decomposition is lossless if it is feasible to reconstruct relation R from decomposed 
tables using Joins. 
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- E.g. 2. Consider the table below: 
R 

 
Suppose we broke R into the following 2 tables: 
R1 

 
R2 

 
Lets see what happens when we join R1 and R2. 

 
We see that we get 2 extra rows, the underlined rows, that weren’t there before. 
This is an example of a lossy decomposition. Notice that we didn’t lose any of the 
original data but we got false/incorrect data. 
 

  

utorid name grade 

g3tout Amy 91 

g4foobar David 78 

c0zhang David 85 

utorid name 

g3tout Amy 

g4foobar David 

c0zhang David 

name grade 

Amy 91 

David 78 

David 85 

utorid name grade 

g3tout Amy 91 

g4foobar David 78 

g4foobar David 85 

c0zhang David 78 

c0zhang David 85 
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First Normal Form (1NF): 
- For a table to be in 1NF, every cell in the relation can only take on a single value. 
- E.g. 3. Consider the table below: 

 
Since there are 2 values under the Major column, this is not in 1NF. To fix it, we can do 
this: 

Second Normal Form (2NF): 
- For a table to be in 2NF: 

1. It must already be in 1NF and 
2. It must not have any partial dependencies. 

- A partial dependency occurs when non-prime attributes depend on a proper subset of 
the prime attributes. 
I.e. Let P be a proper subset of the prime attributes and let NP be some non-prime 
attributes. If we have P → NP, we have partial dependency. 

- Here are the steps on how you can decompose R into smaller relations that are in 2NF: 
1. Identify all the candidate keys. 
2. Identify the prime and non-prime attributes. 
3. Identify the partial dependencies. 
4. Decompose the relation for the candidate keys and all partial dependencies. 

- E.g. 4. Given R(A, B, C, D, E) and the FDs 
AB → C 
D → E 
 
Determine if R is in 2NF, and if it isn’t decompose it so that the relations are in 2NF. 
 
Soln: 
Notice how the RHS of the FDs do not contain A, B and D. Hence, we know that all 
candidate keys must contain at least A, B and D. The closure of ABD is {A, B, C, D, E}, 
so in this case, the candidate key is {A, B, D}. 
 
Since the candidate key is {A, B, D}, the prime attributes are A, B and D and the 
non-prime attributes are C and E. 
 
We see that we have 2 partial dependencies: 

1. AB → C 
2. D → E 

I will decompose R into: 
R1(A, B, D) ← Relation with the prime attributes 
R2(A, B, C) 
R3(D, E) 

SID Major 

123 Math, Computer Science 

SID Major 

123 Math 

123 Computer Science 
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Third Normal Form (3NF): 

- A table is in 3NF if: 
1. It is in 2NF and 
2. It must not have any transitive dependencies. 

- If you have a NP → NP, you have a transitive dependency. 
- Here are the steps on how you can decompose R into smaller relations that are in 3NF: 

1. Identify all the candidate keys. 
2. Identify the prime and non-prime attributes. 
3. Identify the partial dependencies and the transitive dependencies. 
4. Decompose the relation for the candidate keys, all partial dependencies and all 

transitive dependencies. 
- E.g. 5. Given R(A, B, C, D, E, F, G, H, I, J) and the FDs 

AB → C 
AD → GH 
BD → EF 
A → I 
H → J 
 
Determine if R is in 3NF, and if it isn’t decompose it so that the relations are in 3NF. 
 
Soln: 
The candidate key is {A, B, D}. 
Hence, the prime attributes are A, B and D. 
The non-prime attributes are C, E, F, G, H, I, J. 
We see that  

- AB → C is a pd 
- AD → GH is a pd 
- BD → EF is a pd 
- A → I is a pd 
- H → J is a td. 

 
We can decompose R into: 
R1(A, B, C) 
R2(A, D, G, H) 
R3(B, D, E, F) 
R4(A, I) 
R5(H, J) 
R6(A, B, D) 

- Note: If you have (P+NP) → NP, that is also a 3NF violation. 
E.g. If we have the FD AH → J, we know that A is a prime attribute, but H is a non-prime 
attribute and J is also a non-prime attribute. This would still be a transitive dependency 
and would violate 3NF. 

Boyce-Codd Normal Form (BCNF/3.5NF): 
- A table is in BCNF if: 

1. It is in 3NF and 
2. For every non-trivial FD X → Y, X must be a super key. 

- E.g. 6. Suppose we have R(A, B, C, D, E, F) and the FDs 
A → B 
CD → E 
AC → F 
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Is R in BCNF? 
 
Soln: 
Let’s look at A → B. The closure of A is {A, B}. Hence, A is not a super key, which 
means that R is not in BCNF. 

- For every X → Y that violates BCNF, we create 2 tables 
R1(R - Y) 
R2(X, Y) 

More Examples: 
E.g. 7. Create an instance of R(A, B, C, D, E) that violates the FD ABC → DE. 
Soln: 

 
E.g. 8. Suppose we have a relation R(A, B, C, D, E). Does the instance below violate the FD  
DB → A? 

 
Soln: 
No, because A has the same values for all rows. It doesn’t matter what DB is, it will always 
uniquely determine A. 
 
E.g. 9. Suppose we have R(A, B, C, D, E) and the FDs 
A → BD 
D → E 
 
Is R in BCNF? 
 
Soln: 
No. Let’s look at the closure of D. It is {D, E}. Hence, D is not a super key, which means that R 
is not in BCNF. 
 
E.g. 10. Given R(A, B, C, D) and the FDs 
A → B 
AC → D 
Is R in BCNF? If it’s not, decompose it so that the relations are in BCNF. 
Soln: 
We see that R is not in BCNF because in A → B, A is not a super key. 
We will decompose R into 
R1(A, C, D) 
R2(A, B) 

A B C D E 

1 2 3 4 5 

1 2 3 5 7 

A B C D E 

5 3 2 1 6 

5 8 3 1 2 
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Summary of Normal Forms: 

 

Form Explanation Decomposition 

1NF (First Normal Form) Each cell can only contain 1 
value. 

If a cell contains multiple values, 
create a new row for each value. 

2NF (Second Normal Form) Must be in 1NF. 
Cannot have partial 
dependencies (pds). 

Identify all the candidate keys. 
 
Identify the prime and non-prime 
attributes. 
 
Identify the partial dependencies. 
 
Decompose the relation for the 
candidate keys and all pds. 

3NF (Third Normal Form) Must be in 2NF. 
Cannot have transitive 
dependencies (tds). 

Identify all the candidate keys. 
 
Identify the prime and non-prime 
attributes. 
 
Identify the partial dependencies 
and the transitive dependencies. 
 
Decompose the relation for the 
candidate keys, all pds and all tds. 

BCNF (Boyce-Codd Normal Form) Must be in 3NF. 
For each non-trivial FD  
X → Y, X must be a super key. 

decompose (R, X → Y): 
R1 (R - Y) 
R2 (X + Y) 
project FDs onto R1 and R2 
recursively call decompose on R1 
and R2 for BCNF violations 
 
OR 
 
decompose (R, X → Y): 
R1 (X+) 
R2 (R - (X+ - X)) 
project FDs onto R1 and R2 
recursively call decompose on R1 
and R2 for BCNF violations 

4NF (Fourth Normal Form) Must be in BCNF. 
Cannot have multi-valued 
dependencies (mvds). 

decompose (R, X -->> Y): 
R1 = XY 
R2 = X union (R - Y) 
Repeat on R1 and R2 until all 
relations are in 4NF 


